3.402 \(\int \csc ^3(e+f x) (b \sec (e+f x))^{5/2} \, dx\)

Optimal. Leaf size=113 \[ \frac{7 b^{5/2} \tan ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{4 f}-\frac{7 b^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{4 f}+\frac{7 b (b \sec (e+f x))^{3/2}}{6 f}-\frac{\cot ^2(e+f x) (b \sec (e+f x))^{7/2}}{2 b f} \]

[Out]

(7*b^(5/2)*ArcTan[Sqrt[b*Sec[e + f*x]]/Sqrt[b]])/(4*f) - (7*b^(5/2)*ArcTanh[Sqrt[b*Sec[e + f*x]]/Sqrt[b]])/(4*
f) + (7*b*(b*Sec[e + f*x])^(3/2))/(6*f) - (Cot[e + f*x]^2*(b*Sec[e + f*x])^(7/2))/(2*b*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0836008, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {2622, 288, 321, 329, 298, 203, 206} \[ \frac{7 b^{5/2} \tan ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{4 f}-\frac{7 b^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{4 f}+\frac{7 b (b \sec (e+f x))^{3/2}}{6 f}-\frac{\cot ^2(e+f x) (b \sec (e+f x))^{7/2}}{2 b f} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^3*(b*Sec[e + f*x])^(5/2),x]

[Out]

(7*b^(5/2)*ArcTan[Sqrt[b*Sec[e + f*x]]/Sqrt[b]])/(4*f) - (7*b^(5/2)*ArcTanh[Sqrt[b*Sec[e + f*x]]/Sqrt[b]])/(4*
f) + (7*b*(b*Sec[e + f*x])^(3/2))/(6*f) - (Cot[e + f*x]^2*(b*Sec[e + f*x])^(7/2))/(2*b*f)

Rule 2622

Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[1/(f*a^n), Subst[Int
[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n
 + 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \csc ^3(e+f x) (b \sec (e+f x))^{5/2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^{9/2}}{\left (-1+\frac{x^2}{b^2}\right )^2} \, dx,x,b \sec (e+f x)\right )}{b^3 f}\\ &=-\frac{\cot ^2(e+f x) (b \sec (e+f x))^{7/2}}{2 b f}+\frac{7 \operatorname{Subst}\left (\int \frac{x^{5/2}}{-1+\frac{x^2}{b^2}} \, dx,x,b \sec (e+f x)\right )}{4 b f}\\ &=\frac{7 b (b \sec (e+f x))^{3/2}}{6 f}-\frac{\cot ^2(e+f x) (b \sec (e+f x))^{7/2}}{2 b f}+\frac{(7 b) \operatorname{Subst}\left (\int \frac{\sqrt{x}}{-1+\frac{x^2}{b^2}} \, dx,x,b \sec (e+f x)\right )}{4 f}\\ &=\frac{7 b (b \sec (e+f x))^{3/2}}{6 f}-\frac{\cot ^2(e+f x) (b \sec (e+f x))^{7/2}}{2 b f}+\frac{(7 b) \operatorname{Subst}\left (\int \frac{x^2}{-1+\frac{x^4}{b^2}} \, dx,x,\sqrt{b \sec (e+f x)}\right )}{2 f}\\ &=\frac{7 b (b \sec (e+f x))^{3/2}}{6 f}-\frac{\cot ^2(e+f x) (b \sec (e+f x))^{7/2}}{2 b f}-\frac{\left (7 b^3\right ) \operatorname{Subst}\left (\int \frac{1}{b-x^2} \, dx,x,\sqrt{b \sec (e+f x)}\right )}{4 f}+\frac{\left (7 b^3\right ) \operatorname{Subst}\left (\int \frac{1}{b+x^2} \, dx,x,\sqrt{b \sec (e+f x)}\right )}{4 f}\\ &=\frac{7 b^{5/2} \tan ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{4 f}-\frac{7 b^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b \sec (e+f x)}}{\sqrt{b}}\right )}{4 f}+\frac{7 b (b \sec (e+f x))^{3/2}}{6 f}-\frac{\cot ^2(e+f x) (b \sec (e+f x))^{7/2}}{2 b f}\\ \end{align*}

Mathematica [A]  time = 1.95521, size = 109, normalized size = 0.96 \[ \frac{b^3 \left (-12 \csc ^2(e+f x)+16 \sec ^2(e+f x)+21 \sqrt{\sec (e+f x)} \left (\log \left (1-\sqrt{\sec (e+f x)}\right )-\log \left (\sqrt{\sec (e+f x)}+1\right )\right )+42 \sqrt{\sec (e+f x)} \tan ^{-1}\left (\sqrt{\sec (e+f x)}\right )\right )}{24 f \sqrt{b \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^3*(b*Sec[e + f*x])^(5/2),x]

[Out]

(b^3*(-12*Csc[e + f*x]^2 + 42*ArcTan[Sqrt[Sec[e + f*x]]]*Sqrt[Sec[e + f*x]] + 21*(Log[1 - Sqrt[Sec[e + f*x]]]
- Log[1 + Sqrt[Sec[e + f*x]]])*Sqrt[Sec[e + f*x]] + 16*Sec[e + f*x]^2))/(24*f*Sqrt[b*Sec[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.16, size = 699, normalized size = 6.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^3*(b*sec(f*x+e))^(5/2),x)

[Out]

-1/24/f*(-1+cos(f*x+e))*(24*cos(f*x+e)^4*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(3/2)+48*cos(f*x+e)^3*(-cos(f*x+e)/(co
s(f*x+e)+1)^2)^(3/2)-3*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-
cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)*cos(f*x+e)^4-21*arctan(1/2/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^
(1/2))*cos(f*x+e)^4+24*cos(f*x+e)^4*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*
cos(f*x+e)-2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)+24*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)
^2)^(3/2)-4*cos(f*x+e)^3*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-28*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(
1/2)+3*cos(f*x+e)^2*ln(-(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-cos
(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)+21*cos(f*x+e)^2*arctan(1/2/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/
2))-24*cos(f*x+e)^2*ln(-2*(2*cos(f*x+e)^2*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-cos(f*x+e)^2+2*cos(f*x+e)-2*(-c
os(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)-1)/sin(f*x+e)^2)+16*cos(f*x+e)*(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)+16*(-cos
(f*x+e)/(cos(f*x+e)+1)^2)^(1/2))*cos(f*x+e)*(b/cos(f*x+e))^(5/2)/(-cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)/sin(f*x+
e)^4

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3*(b*sec(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.70897, size = 1133, normalized size = 10.03 \begin{align*} \left [\frac{42 \,{\left (b^{2} \cos \left (f x + e\right )^{3} - b^{2} \cos \left (f x + e\right )\right )} \sqrt{-b} \arctan \left (\frac{\sqrt{-b} \sqrt{\frac{b}{\cos \left (f x + e\right )}}{\left (\cos \left (f x + e\right ) + 1\right )}}{2 \, b}\right ) + 21 \,{\left (b^{2} \cos \left (f x + e\right )^{3} - b^{2} \cos \left (f x + e\right )\right )} \sqrt{-b} \log \left (\frac{b \cos \left (f x + e\right )^{2} - 4 \,{\left (\cos \left (f x + e\right )^{2} - \cos \left (f x + e\right )\right )} \sqrt{-b} \sqrt{\frac{b}{\cos \left (f x + e\right )}} - 6 \, b \cos \left (f x + e\right ) + b}{\cos \left (f x + e\right )^{2} + 2 \, \cos \left (f x + e\right ) + 1}\right ) + 8 \,{\left (7 \, b^{2} \cos \left (f x + e\right )^{2} - 4 \, b^{2}\right )} \sqrt{\frac{b}{\cos \left (f x + e\right )}}}{48 \,{\left (f \cos \left (f x + e\right )^{3} - f \cos \left (f x + e\right )\right )}}, -\frac{42 \,{\left (b^{2} \cos \left (f x + e\right )^{3} - b^{2} \cos \left (f x + e\right )\right )} \sqrt{b} \arctan \left (\frac{\sqrt{\frac{b}{\cos \left (f x + e\right )}}{\left (\cos \left (f x + e\right ) - 1\right )}}{2 \, \sqrt{b}}\right ) - 21 \,{\left (b^{2} \cos \left (f x + e\right )^{3} - b^{2} \cos \left (f x + e\right )\right )} \sqrt{b} \log \left (\frac{b \cos \left (f x + e\right )^{2} - 4 \,{\left (\cos \left (f x + e\right )^{2} + \cos \left (f x + e\right )\right )} \sqrt{b} \sqrt{\frac{b}{\cos \left (f x + e\right )}} + 6 \, b \cos \left (f x + e\right ) + b}{\cos \left (f x + e\right )^{2} - 2 \, \cos \left (f x + e\right ) + 1}\right ) - 8 \,{\left (7 \, b^{2} \cos \left (f x + e\right )^{2} - 4 \, b^{2}\right )} \sqrt{\frac{b}{\cos \left (f x + e\right )}}}{48 \,{\left (f \cos \left (f x + e\right )^{3} - f \cos \left (f x + e\right )\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3*(b*sec(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

[1/48*(42*(b^2*cos(f*x + e)^3 - b^2*cos(f*x + e))*sqrt(-b)*arctan(1/2*sqrt(-b)*sqrt(b/cos(f*x + e))*(cos(f*x +
 e) + 1)/b) + 21*(b^2*cos(f*x + e)^3 - b^2*cos(f*x + e))*sqrt(-b)*log((b*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 -
cos(f*x + e))*sqrt(-b)*sqrt(b/cos(f*x + e)) - 6*b*cos(f*x + e) + b)/(cos(f*x + e)^2 + 2*cos(f*x + e) + 1)) + 8
*(7*b^2*cos(f*x + e)^2 - 4*b^2)*sqrt(b/cos(f*x + e)))/(f*cos(f*x + e)^3 - f*cos(f*x + e)), -1/48*(42*(b^2*cos(
f*x + e)^3 - b^2*cos(f*x + e))*sqrt(b)*arctan(1/2*sqrt(b/cos(f*x + e))*(cos(f*x + e) - 1)/sqrt(b)) - 21*(b^2*c
os(f*x + e)^3 - b^2*cos(f*x + e))*sqrt(b)*log((b*cos(f*x + e)^2 - 4*(cos(f*x + e)^2 + cos(f*x + e))*sqrt(b)*sq
rt(b/cos(f*x + e)) + 6*b*cos(f*x + e) + b)/(cos(f*x + e)^2 - 2*cos(f*x + e) + 1)) - 8*(7*b^2*cos(f*x + e)^2 -
4*b^2)*sqrt(b/cos(f*x + e)))/(f*cos(f*x + e)^3 - f*cos(f*x + e))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**3*(b*sec(f*x+e))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.15476, size = 173, normalized size = 1.53 \begin{align*} \frac{b^{8}{\left (\frac{6 \, \sqrt{b \cos \left (f x + e\right )}}{{\left (b^{2} \cos \left (f x + e\right )^{2} - b^{2}\right )} b^{4}} + \frac{21 \, \arctan \left (\frac{\sqrt{b \cos \left (f x + e\right )}}{\sqrt{-b}}\right )}{\sqrt{-b} b^{5}} - \frac{21 \, \arctan \left (\frac{\sqrt{b \cos \left (f x + e\right )}}{\sqrt{b}}\right )}{b^{\frac{11}{2}}} + \frac{8}{\sqrt{b \cos \left (f x + e\right )} b^{5} \cos \left (f x + e\right )}\right )} \mathrm{sgn}\left (\cos \left (f x + e\right )\right )}{12 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^3*(b*sec(f*x+e))^(5/2),x, algorithm="giac")

[Out]

1/12*b^8*(6*sqrt(b*cos(f*x + e))/((b^2*cos(f*x + e)^2 - b^2)*b^4) + 21*arctan(sqrt(b*cos(f*x + e))/sqrt(-b))/(
sqrt(-b)*b^5) - 21*arctan(sqrt(b*cos(f*x + e))/sqrt(b))/b^(11/2) + 8/(sqrt(b*cos(f*x + e))*b^5*cos(f*x + e)))*
sgn(cos(f*x + e))/f